A brief history of time by Stephen W. Hawking

A brief history of time by Stephen W. Hawking

Author:Stephen W. Hawking [Hawking, Stephen W.]
Format: epub
Tags: History, General, Philosophy, Science, Mathematics, working, Astronomy - Universe, Cosmology, Astronomy, Physics, Science: General & Reference, Science: general issues, Metaphysics
ISBN: 9780553380163
Publisher: Bantam Books
Published: 1998-07-15T17:16:05.221000+00:00


A Brief History of Time

CHAPTER 7

BLACK HOLES AIN’T SO BLACK

Before 1970, my research on general relativity had concentrated mainly on the question of whether or not there had been a big bang singularity. However, one evening in November that year, shortly after the birth of my daughter, Lucy, I started to think about black holes as I was getting into bed. My disability makes this rather a slow process, so I had plenty of time. At that date there was no precise definition of which points in space-time lay inside a black hole and which lay outside. I had already discussed with Roger Penrose the idea of defining a black hole as the set of events from which it was not possible to escape to a large distance, which is now the generally accepted definition. It means that the boundary of the black hole, the event horizon, is formed by the light rays that just fail to escape from the black hole, hovering forever just on the edge (Fig. 7.1). It is a bit like running away from the police and just managing to keep one step ahead but not being able to get clear away!

Suddenly I realized that the paths of these light rays could never approach one another. If they did they must eventually run into one another. It would be like meeting someone else running away from the police in the opposite direction - you would both be caught! (Or, in this case, fall into a black hole.) But if these light rays were swallowed up by the black hole, then they could not have been on the boundary of the black hole. So the paths of light rays in the event horizon had always to be moving parallel to, or away from, each other. Another way of seeing this is that the event horizon, the boundary of the black hole, is like the edge of a shadow - the shadow of impending doom. If you look at the shadow cast by a source at a great distance, such as the sun, you will see that the rays of light in the edge are not approaching each other.

If the rays of light that form the event horizon, the boundary of the black hole, can never approach each other, the area of the event horizon might stay the same or increase with time, but it could never decrease because that would mean that at least some of the rays of light in the boundary would have to be approaching each other. In fact, the area would increase whenever matter or radiation fell into the black hole (Fig. 7.2). Or if two black holes collided and merged together to form a single black hole, the area of the event horizon of the final black hole would be greater than or equal to the sum of the areas of the event horizons of the original black holes (Fig. 7.3). This nondecreasing property of the event horizon’s area placed an important restriction on the possible behavior of black holes.



Download



Copyright Disclaimer:
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.